SECTION 1 GENERAL

TABLE OF CONTENTS

		rage
Three View		. 1-2
Introduction		
Descriptive Data		
Engine		
Propeller		
Fuel		
Oil		
Maximum Certificated Weights		
Standard Airplane Weights		. 1-5
Cabin And Entry Dimensions		. 1-5
Baggage Space Dimensions		. 1-5
Specific Loadings		. 1-5
Symbols, Abbreviations And Terminology		. 1-5
General Airspeed Terminology And Symbols		. 1-5
Meteorological Terminology		. 1-6
Engine Power Terminology		. 1-7
Airplane Performance And Flight Planning Terminology		. 1-7
Weight And Balance Terminology		. 1-7

1 July 1978 1-1

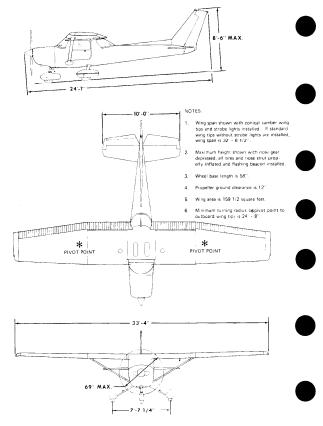


Figure 1-1. Three View

THIS DATA APPLICABLE ONLY TO AIRPLANES WITH LYCOMING 0:235-L2C ENGINE. FOR AIRPLANES WITH ENGINE MODIFIED TO 0:235-N2C. REFER TO DATA IN SECTION 9 SUPPLEMENT.

CESSNA MODEL 152 SECTION 1 GENERAL

INTRODUCTION

This handbook contains 9 sections, and includes the material required to be furnished to the pilot by CAR Part 3. It also contains supplemental data supplied by Cessna Aircraft Company.

Section 1 provides basic data and information of general interest. It also contains definitions or explanations of symbols, abbreviations, and terminology commonly used.

DESCRIPTIVE DATA

ENGINE

Number of Engines: 1.

Engine Manufacturer: Avco Lycoming.

Engine Model Number: O-235-L2C.

Engine Type: Normally-aspirated, direct-drive, air-cooled, horizontally-opposed, carburetor equipped, four-cylinder engine with 233.3 cu. in. displacement.

Horsepower Rating and Engine Speed: 110 rated BHP at 2550 RPM.

PROPELLER

Propeller Manufacturer: McCauley Accessory Division.

Propeller Model Number: 1A103/TCM6958.

Number of Blades: 2.

Propeller Diameter, Maximum: 69 inches.

Minimum: 67.5 inches.

Propeller Type: Fixed pitch.

FUEL

Approved Fuel Grades (and Colors):

100LL Grade Aviation Fuel (Blue).

100 (Formerly 100/130) Grade Aviation Fuel (Green).

Fuel Capacity:

Standard Tanks:

Total Capacity: 26 gallons.

Total Capacity Each Tank: 13 gallons.

Total Usable: 24.5 gallons.

1 July 1978

Revision 1 - 31 March 1983

SECTION 1 GENERAL

CESSNA MODEL 152

Long Range Tanks:

Total Capacity: 39 gallons.

Total Capacity Each Tank: 19.5 gallons.

Total Usable: 37.5 gallons.

NOTE

Due to cross-feeding between fuel tanks, the tanks should be re-topped after each refueling to assure maximum capacity.

OIL

Oil Grade (Specification):

MIL-L-6082 Aviation Grade Straight Mineral Oil: Use to replenish supply during first 25 hours and at the first 25-hour oil change. Continue to use until a total of 50 hours has accumulated or oil consumption has stabilized.

NOTE

The airplane was delivered from the factory with a corrosion preventive aircraft engine oil. This oil should be drained after the first 25 hours of operation.

MIL-L-22851 Ashless Dispersant Oil: This oil must be used after first 50 hours or oil consumption has stabilized.

Recommended Viscosity for Temperature Range:

MIL-L-6082 Aviation Grade Straight Mineral Oil:

SAE 50 above 16°C (60°F).

SAE 40 between -1°C (30°F) and 32°C (90°F).

SAE 30 between -18°C (0°F) and 21°C (70°F).

SAE 20 below -12°C (10°F).

MIL-L-22851 Ashless Dispersant Oil:

SAE 40 or SAE 50 above 16°C (60°F).

SAE 40 between -1°C (30°F) and 32°C (90°F).

SAE 30 or SAE 40 between -18°C (0°F) and 21°C (70°F).

SAE 30 below -12°C (10°F).

Oil Capacity:

Sump: 6 Quarts.

Total: 7 Quarts (if oil filter installed).

MAXIMUM CERTIFICATED WEIGHTS

Ramp: 1675 lbs. Takeoff: 1670 lbs. Landing: 1670 lbs.

Weight in Baggage Compartment:

Baggage Area 1 (or passenger on child's seat) - Station 50 to 76: 120 lbs.

See note below.

Baggage Area 2 - Station 76 to 94: 40 lbs. See note below.

NOTE

The maximum combined weight capacity for baggage areas 1 and 2 is 120 lbs.

STANDARD AIRPLANE WEIGHTS

Standard Empty Weight, 152: 1101 lbs. 152 II: 1133 lbs. Maximum Useful Load. 152: 574 lbs.

152 II: 542 lbs.

CABIN AND ENTRY DIMENSIONS

Detailed dimensions of the cabin interior and entry door openings are illustrated in Section 6.

BAGGAGE SPACE DIMENSIONS

Baggage area dimensions are illustrated in detail in Section 6.

SPECIFIC LOADINGS

Wing Loading: 10.5 lbs./sq. ft. Power Loading: 15.2 lbs./hp.

SYMBOLS, ABBREVIATIONS AND TERMINOLOGY

GENERAL AIRSPEED TERMINOLOGY AND SYMBOLS

KCAS

Knots Calibrated Airspeed is indicated airspeed corrected for position and instrument error and expressed in knots Knots calibrated airspeed is equal to KTAS in standard atmosphere at sea level. KIAS Knots Indicated Airspeed is the speed shown on the

airspeed indicator and expressed in knots.

KTAS Knots True Airspeed is the airspeed expressed in knots

relative to undisturbed air which is KCAS corrected for

altitude and temperature.

Manuevering Speed is the maximum speed at which you

may use abrupt control travel.

 V_{FE} Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended

position.

 v_{NO} Maximum Structural Cruising Speed is the speed that should not be exceeded except in smooth air, then only with

caution.

 v_{NE} Never Exceed Speed is the speed limit that may not be

exceeded at any time.

 v_s Stalling Speed or the minimum steady flight speed at

which the airplane is controllable.

 v_{s_o} Stalling Speed or the minimum steady flight speed at

which the airplane is controllable in the landing configuration at the most forward center of gravity. Best Angle-of-Climb Speed is the speed which results in

 v_{x} the greatest gain of altitude in a given horizontal distance.

Best Rate-of-Climb Speed is the speed which results in the

greatest gain in altitude in a given time.

METEOROLOGICAL TERMINOLOGY

OAT Outside Air Temperature is the free air static temperature. It is expressed in either degrees Celsius or degrees Fah-

renheit.

Standard Standard Temperature is 15°C at sea level pressure altitude and decreases by 2°C for each 1000 feet of altitude. Tempera-

Pressure Altitude is the altitude read from an altimeter Pressure when the altimeter's barometric scale has been set to 29.92 Altitude

inches of mercury (1013 mb).

ture

Fuel

ENGINE POWER TERMINOLOGY

BHP Brake Horsepower is the power developed by the engine.

RPM Revolutions Per Minute is engine speed.

Static Static RPM is engine speed attained during a full-throttle RPM engine runup when the airplane is on the ground and

stationary.

AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY

Demon-Demonstrated Crosswind Velocity is the velocity of the strated Crosswind Velocity

crosswind component for which adequate control of the airplane during takeoff and landing was actually demonstrated during certification tests. The value shown is not considered to be limiting.

Usable Fuel Usable Fuel is the fuel available for flight planning.

Unusable Unusable Fuel is the quantity of fuel that can not be safely used in flight.

GPH Gallons Per Hour is the amount of fuel (in gallons) consumed per hour.

NMPG Nautical Miles Per Gallon is the distance (in nautical miles) which can be expected per gallon of fuel consumed at a specific engine power setting and/or flight configuration.

g is acceleration due to gravity.

WEIGHT AND BALANCE TERMINOLOGY

Reference Reference Datum is an imaginary vertical plane from Datum which all horizontal distances are measured for balance purposes.

Station Station is a location along the airplane fuselage given in terms of the distance from the reference datum

Arm Arm is the horizontal distance from the reference datum to the center of gravity (C.G.) of an item.

Moment Moment is the product of the weight of an item multiplied

1 July 1978 1-7 by its arm. (Moment divided by the constant 1000 is used in this handbook to simplify balance calculations by reducing the number of digits.)

Center of Gravity (C.G.) Center of Gravity is the point at which an airplane, or equipment, would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.

C.G. Arm Center of Gravity Arm is the arm obtained by adding the airplane's individual moments and dividing the sum by

C.G. Limits the total weight.

given weight.

Center of Gravity Limits are the extreme center of gravity locations within which the airplane must be operated at a

Standard Empty Weight

Standard Empty Weight is the weight of a standard airplane, including unusable fuel, full operating fluids and full engine oil.

Basic Empty Weight

Basic Empty Weight is the standard empty weight plus the weight of optional equipment.

Useful Load **Useful Load** is the difference between ramp weight and the basic empty weight.

Maximum Ramp Weight Maximum Ramp Weight is the maximum weight approved for ground maneuver. (It includes the weight of start, taxi and runup fuel.)

Maximum Takeoff Weight Maximum Takeoff Weight is the maximum weight approved for the start of the takeoff run.

Maximum Landing Weight Maximum Landing Weight is the maximum weight approved for the landing touchdown.

Tare

Tare is the weight of chocks, blocks, stands, etc. used when weighing an airplane, and is included in the scale readings. Tare is deducted from the scale reading to obtain the actual (net) airplane weight.